
This reactive resilience strategy allows you to 
execute more than one invocation if the original 
has failed or considered too slow.

You can configure the behaviour of the strategy 
via the HedgingStrategyOptions<T> object.

The execution can be configured to run the 
invocations sequentially or concurrently.

Set the Delay greater than 0 seconds to run the 
invocations sequentially and issue a new one only 
if the previous one is taking too long.

Set the Delay less than 0 seconds to run the 
invocations sequentially and issue a new one only 
if the previous one failed.

Set the Delay to 0 seconds to run the invocations 
concurrently and wait only for the fastest one to 
complete.

Basics

Hedging strategy CHEAT SHEET

Specify sequential retries for slow execution

Specify sequential retries for failed execution + notification

new ResiliencePipelineBuilder<int>()
.AddHedging(new HedgingStrategyOptions<int>()
{

Delay = TimeSpan.FromSeconds(1),
MaxHedgedAttempts = 2

})

new ResiliencePipelineBuilder<int>()
.AddHedging(new HedgingStrategyOptions<int>()
{

Delay = TimeSpan.FromSeconds(-1),
ShouldHandle = new PredicateBuilder<int>().HandleResult(int.IsNegative),
OnHedging = async args => await NotifyAsync(args.AttemptNumber)

})

Specify sequential retries + provide a fallback if all attempts failed
new ResiliencePipelineBuilder<int>()

.AddHedging(new HedgingStrategyOptions<int>()
{

Delay = TimeSpan.FromSeconds(-1),
MaxHedgedAttempts = MaxRetries,
ShouldHandle = new PredicateBuilder<int>().HandleResult(int.IsPositive),
ActionGenerator = static args => args.AttemptNumber != MaxRetries

? () => args.Callback(args.ActionContext) //original action
: () => Outcome.FromResultAsValueTask(-1) //fallback action

})

Specify concurrent retries + wait until the first successful response
new ResiliencePipelineBuilder<HttpResponseMessage>()

.AddHedging(new HedgingStrategyOptions<HttpResponseMessage>()
{

Delay = TimeSpan.Zero,
ShouldHandle = new PredicateBuilder<HttpResponseMessage>()

.HandleResult(r => !r.IsSuccessStatusCode)
})


